Design of the Shahkar Runtime Execution
Environment Kit:

ShREEK

Dave Evans
evansde@fnal.gov

24th September 2004

Contents

1 Introduction 3
2 The Main Script: Executor.py 3
3 Plugin Modules 4
4 ShREEK Configuration 6
5 The ExecutionThread Object 6
6 The MonitorThread Object 8

6.1 The MonitorState Object 8
7 XMLRPC Service 9
A Appendix A: Command Line Options to Executor 10
B Appendix B: UpdateDictionary Documentation 10

1 Introduction

Shahkar is a workflow management package used to run the software of
multiple HEP experiments via an interpreted metadata based language. Exe-
cutable Tasks are run in chains feeding the output of one stage into the input
of the next, and each processing step needs to be monitored and checked upon
completion to ensure data integrity. For this purpose, a structured runtime
execution system is provided in the Shahkar package, which is intended to
provide a common interface to monitoring information about the executable
whilst camouflaging the details of the software from the execution site and
its monitoring software. In addition, a generic monitoring framework with
customisable plug-in dynamically loaded objects to interface to various mon-
itoring systems is provided. The Shahkar subpackage that provides the core
runtime utilities is called the Shahkar Runtime Ezecution Environment Kit
or ShREEK .

2 The Main Script: Executor.py

The main ShREEK script is the Executor.py script that takes a list of
executable tasks as produced by the Linker and executes the jobs in the list
sequentially. The Executor exists for the entire lifetime of the job, and runs
several services to provide information about the execution processes and an
API to interact with them. The Executor is invoked via a wrapper script
built and created by the batch interfaces used to create the job. Various
options are available for the Executor object via a standard POSIX getopt
command line mechanism. The command line options are listed in Appendix
A. A broad outline of the functions performed by the Executor object are
as follows:

e [oad the set of tasks to be executed.

e Load the runtime configuration written out by the linker and ShREEK
Interface and use it to initialise the various runtime tools required.

e Execute the tasks in a threaded subprocess.

e Provide event-driven and periodic monitoring of the execution process.

e Provide an XML-RPC [1] service on a TCP Port which can be used to
interact with the job remotely.

e Handle any error conditions that arise during the processing in an in-
telligent way.

The Executor Object performs these tasks using a threaded execution
model implemented with the python threading.Thread|2| class. The thread
that handles the execution of the tasks is the ExecutionThread , while the
MonitorThread handles the monitoring tasks. If an RPC service is required,
it is implemented in a seperate thread. Each of these threads are described
later in this document. A diagram showing the main components of the
Executor and how they use the files produced by the Linker can be seen in
Fig. 1.

3 Plugin Modules

Given the highly differing nature of output for different experiments exe-
cutables, ShREEK provides a plugin mechanism that allows three catagories
of service to be provided by the user and invoked at certain points within
the execution process. These three catagories are:

1. Updators Functions which provide one or more fields of information
to the MonitorThread MonitorState during periodic monitor updates.
For example, updating the memory and CPU usage of a process.

2. Monitors Monitor Objects that provide handlers for certain events
arising at various points in the job. For example, notifying a farm
monitoring service of thet start of a new task or emailing users with a
status update.

3. ControlPoints Control Points are invoked before and after executable
tasks and allow responses to the job execution to customise execution
flow. For example a control point may check for errors and attempt to
re-run an executable that failed or run a rescue/cleanup task.

Linker

ShREEK Configuration|

Configuration

Load Task List

ShREEK Executor
Exe Thread Start Thread
P Mon Thread
Run Tasks¢
Task 1 |« Periodic Update > M'f');;lt((;r
Task2 |« Periodic Update >
v Periodic Upd
Task N |« eriodic Update >
l v
Stop Thread > End
End

Figure 1: Diagram showing the main components of the ShREEK Executor
Object. The Linker produces a task list and CfgFile in the job area which
. The tasks are then run in sequence by the

are loaded by the Executor

ExecutionThread while being monitored by the MonitorThread .

ShREEK Plugins are python modules which must be on the PYTHON-
PATH at runtime. ShREEK provides a plugin registration facility that allows
modules to register ShAREEK plugins when they are imported. A list of plu-
gin module names is given to ShREEK via its runtime configuration file and
these modules are all dynamically imported, which triggers the plugin regis-
tration mechanism. The configuration file allows the user to the select and
configure the various plugins they require for their execution task.

4 ShREEK Configuration

ShREEK is configured at controlled by a configuration object. This object
is a python structure that contains information about how ShREEK will run.
ShREEK Configuration objects can be saved and loaded into XML using the
Shahkar XMLP package to save and load the object as an XML file. The
information in the configuration object consists of the following:

e Tasks and execution order

e List of Plugin modules to be loaded

e List of Updators to be used to monitor tasks

e List of Monitors to be used and their configuration information
e List of Control Points and their configuration

The task configuration object can be created and managed using the
ShREEKInterface Object and then saved into its XML form. This XML file
is then passed to the SAREEK Executor via the command line interface
—taskcfg option.

5 The ExecutionThread Object

The ExecutionThread Object runs the tasks in the sequence provided
by the ShAREEK Configuration and provides an API to the running tasks.
The ExecutionThread provides an interface to send POSIX signals to the
executing process in order to control it, and allow various monitoring systems

6

to interact with the task. The ExecutionThread performs the following
steps during execution:

e Start the MonitorThread .

e Notify Start of job to MonitorThread .

e Loop through the list of executable tasks.

e Notify Start of each Task to MonitorThread .

e Changes the current working dir to the task subdir.

e Execute the task in a sub-process using a python Popen4 Object [3].

e Poll the Popen4 object until completion, or until a signal is recieved or
error condition occurs.

e Changes the current working dir back to the main job dir.
e Notify End of each Task to MonitorThread .
e Notify End of job to MonitorThread .

e End the MonitorThread .

The ExecutionThread API for sending signals to the running task, as
shown in Table 1.

Method Description
killjob() Terminate Execution of all tasks
killtask() Send SIGTERM to current task sub process

suspendjob() | Send SIGSTOP to current task sub process
resumejob() | Send SIGCONT to current task sub process

Table 1: Table of signal API methods for the ExecutionThread Object.
This set of methods can potentially be expanded to include all possible
POSIX signals. Signals sent to the ExecutionThread are processed in
a cyclical manner, via python threading.Event objects, and if an Event
gets set, the appropriate signal is sent to the task process during the next
cycle.

6 The MonitorThread Object

The MonitorThread is a periodically updating thread controlled by the
ExecutionThread , that refreshes monitoring information. The updated
information is distributed to a monitoring framework, containing adapter
classes to handle certain monitoring conditions, by either acting on the in-
formation or forwarding it to some other source. This is achieved by creating
an instance of a MonitorState Object and directing it at the currently exe-
cuting task and periodically updating it. This object is then dispatched to the
monitoring framework so that the information within it can be accessed by
the monitor interfaces themselves. The MonitorThread also provides an API
for notifying the monitor framework to other events such as change of tasks,
signals, and error conditions. The update interval of the MonitorThread
can be set with a command line option to Executor .

6.1 The MonitorState Object

The MonitorState Object provides a snapshot of an executable task
by examining properties of the task as it runs. This information is used to
proviude a snapshot of the task in terms of process parameters extracted
from the Linux /proc filesystem and the incremental processing details such
as event or filenumber. The MonitorState Object is derived from a subclass
of python dictionary called UpdateDictionary which allows keys to be
added along with a method to update the value of that key. An Update
method calls the key specific monitor update methods for each key. Detailed
documentation of the UpdateDictionary Object is provided in Appendix
B.

The MonitorThread calls the Update method of the MonitorState
and distributes the MonitorState object to each monitor adapter, where
it can be used to extract information for distribution to monitoring systems.

The fields in the MonitorThread object are provided by ShREEK Upda-
tor Plugins, that can be registered from Plugin modules and selected for use
in the configuration file. Updators are relatively simple tools that monitor
one or two features of the job and add that information to the MonitorState

7 XMLRPC Service

An XML-RPC interface to the monitor state can be run by adding the -r
command line option for the Executor . This will start an HTTP based
XMLRPC service on the port provided by the —portlist or —xmlrpcport com-
mand line options. The —xmlrpcport is used to specify a single port number
to run the service on, the —portlist is used to provide a range of ports for
when multiple jobs run on a single host. The default port used is 8080.
The hostname of the port defaults to “localhost” and can be set via the
—xmlrpchost option. When running the server makes the information in
the MonitorState Object available via a remote service on the specified
port. The accessor methods are defined in the RPCThread.py module, in
the RunjobRPCHandler class. These methods can be called from XMLRPC
clients and used to return the monitor information. The RPC service is
implemented in a seperate thread via the RPCThread Object defined in
RPCThread.py.

A Appendix A: Command Line Options to Executor

—xmlrpcport=
—update=
—verbose
—noupdate

—tasklist=
—exceptions
—xmlrpc
—portlist=

—test
—tasklogfile=

—xmlrpchost=
—cfgkey=

Disable Periodic Monitor, shorthand for —noupdate
Test Mode, shorthand for —test

Verbose Mode, shorthand for —verbose

Enable Exceptions: shorthand for —exceptions

Run XMLRPC Server, shorthand for —xmlrpc

Port Number to run RPC interface server

Monitor Update period in seconds

Verbose Mode

Disable Periodic Monitoring, Event driven monitoring
still works

Name of job list to be executed, default is TaskList.py
Allow Exceptions to be raised for development testing
Run XMLRPC Server for this job

List of port numbers to use for multi job nodes, comma
sep arated list: 8080,8081,8082

Test Mode, jobs are not executed

Name of logfiles for redirecting stdout and stderr from
tasks

Host name to use for RPC Service

Name Of Configuration Dictionary in tasklist module

B Appendix B: UpdateDictionary Documen-

tation

UpdateDictionary inherits from the python dict type, and augments the
functionality of the basic dictionary object by storing references to methods
corresponding to certain keys. An Update Method is provided that calls the
update method for each key that has one. Update Methods are called in the
order that they are added to the dictionary. Normal keys without Update
methods can be added in the usual way. The UpdateDictionary Interface
is identical to that of the normal dictionary, with the only extra methods
being for adding a key with an update method, and an Update method to
call the registered methods.

e AddUpdateKey(key,value,updator=None)
This method is used to add a key with an update method. The

10

method must be either a python MethodType, FunctionType or a
callable InstanceType. The Update method is recorded for that key.

e Update()
This method calls all the update methods for each key that has one.

Update methods that are registered must accept a single argument when
called, which is the UpdateDictionary instance, so that other keys can be
accessed by updator methods. The Updator method must return the new
value to be stored under that key. An Example of using the UpdateDictionary
object is provided below.

Define an update method
def Updator(updDict):
return new value of key
return ‘‘Updator Called”

ud = UpdateDict()

Normal Dictionary Keys can be added
ud[’NormalKey’] = ’value’

Now add an updator key

ud.AddUpdateKey (’Key1l’,’Not Updated’,Updator)
ud looks like:

{’NormalKey’:’value’,’Keyl’:’Not Updated’}
Now call Update

ud.Update ()

ud now looks like:

{’NormalKey’:’value’,’Keyl’:’Updator Called’}

References

[1] XMLRPC Webpage.
http://www.xmlrpc.com/

|2] Python threading module Thread class.
http://www.python.org/doc/current/lib/thread-objects.html

11

|3] Python popen2 module Popen4 class.
-objects.html

